®

Check for
updates

Building Visual Novels with Social
Simulation and Storylets

Shi Johnson-Bey®) | Kira Liao, Samuel Shields, Daeun Hwang,
Noah Wardrip-Fruin, Michael Mateas, and Edward Melcer

University of California Santa Cruz, Santa Cruz, CA 95064, USA
{ismaj ohn,kiyliao,samshiel,dhwang,nwardrip,mmateas, emelcer}@ucsc .edu

Abstract. Simulationist interactive narrative systems allow game mak-
ers to craft reactive stories driven by simulated characters and their social
dynamics. These systems produce narrative experiences that feel more
emergent but may lack a coherent plot structure. We explored how to
combine the emergent possibilities of social simulation with a procedu-
ral narrative system that affords writers strong authorial control over
the plot. We did this by developing a Unity extension called Anansi that
helps people create social simulation-driven visual novels. It enables users
to inject simulation data into their story dialogue using logical queries
and parameterized storylets written using Ink. The paper describes an
overview of our extension and how we empower writers to drive narrative
progression using cascading social effects from player choices.

Keywords: Storylets + Tools - Social Simulation + Unity - Visual Novel

1 Introduction

Visual novels (VNs) have shown to be practical tools for creating educational
interactive storytelling games [1]. These games typically feature hand-authored
choice-based branching narrative structures that produce well-constructed nar-
rative experiences. However, a shortcoming of the branching narrative design
approach is that it is prone to an exponential explosion in authoring burden as
game designers try to give the player the illusion of a living world where the
player can express agency [2].

Conversely, Simulationist Interactive Narrative systems develop narratives
over time from the conflicts and drama that emerge between the player and
non-player characters (NPCs) [12]. These systems are much more welcoming to
player experimentation and exploration without suffering from an exponential
growth in authoring burden. However, this often comes at the cost of game
designers having less control over the final plot and overall narrative experience
[20].

Since simulation games have also been shown to be effective for educational
use [17], it would be ideal if we could provide players with an experience that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
J. T. Murray and M. C. Reyes (Eds.): ICIDS 2024, LNCS 15468, pp. 145-161, 2025.
https://doi.org/10.1007/978-3-031-78450-7_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-78450-7_9&domain=pdf
https://doi.org/10.1007/978-3-031-78450-7_9

146 S. Johnson-Bey et al.

combines the freedom of a simulation with the well-formed structure of a choice-
based narrative.

We explored how to help storytellers create interactive narrative games that
leverage simulated non-player characters and procedural storytelling techniques
to increase game replayability and encourage player exploration. We built a Unity
extension called Anansi'. It’s a toolkit for building simulation-driven visual nov-
els in Unity, and we are actively using it to create an educational game that
teaches players about the Responsible Conduct of Research within academia.

Anansi helps users create location-based, simulation-driven visual novels
where the player can move between various locations and interact with the char-
acters present. Player choices can affect their immediate relationships with NPCs
and have cascading, second-order effects on other social relationships. We draw
inspiration from games like Persona § [19] and the dating sim genre because
they focus on cultivating social relationships with NPCs.

We wanted to explore how to strike a balance between the emergent possibil-
ities of simulation and a writing workflow that affords strong authorial control
over the plot. Anansi combines a storylet runtime, powered by the Ink narrative
scripting language?, with an underlying world simulation with NPCs that follow
schedules, move between locations, track their feelings about other characters,
and respond to various social events happening within the game.

This paper provides an overview of Anansi’s architecture, design motiva-
tions, lessons learned, and plans for the future. It also provides the following
contributions:

— Demonstrate how to parameterize storylets to allow dynamic casting of char-
acters into dialogue.

— Discuss how writers could associate cascading social effects with story choices.

— An example of game architecture that combines social simulation, storylets,
and branching narrative design.

2 Related Work

2.1 Simulationist Interactive Narrative

Research into simulationist interactive narrative has been driven by the goal
of producing endlessly replayable and emergent narrative experiences with
autonomous characters that respond to the player and guide the plot [12].
Research in this area has been ongoing for decades. However, there are three
systems that we highlight as being particularly relevant to this work: Facade
[14], Comme il Faut/Prom Week [16], and Versu [4]. We chose these because
they are either complete game experiences or have been used to produce com-
plete game experiences.

Prom Week and Versu used parameterized social scenarios to drive character
actions and narrative progression. Based on the current game state, characters

! https://github.com/ShiJbey/Anansi.
2 https://www.inklestudios.com /ink/.


https://github.com/ShiJbey/Anansi
https://www.inklestudios.com/ink/

Building Visual Novels with Social Simulation and Storylets 147

would choose actions based on their goals and what scenarios are available. This
architecture afforded NPCs strong autonomy over their actions at the cost of
authorial control over the game’s plot [20]. Thus, the final narrative experienced
by the player is their subjective sequence of scenarios.

Facade provides a middle ground between character autonomy and authorial
control by using joint actions (like parameterized scenarios) to coordinate NPC
behaviors and a drama manager to moderate the presentation of story beats.
However, programming NPC behaviors in Facade is complex and is more akin
to multi-robot coordination than writing story prose [15]. For this project, we
wanted to empower designers to leverage parameterized scenarios while providing
an interface that is more friendly to writers.

2.2 Tools for Creating Choice-Based Interactive Narratives

RenPy?, Twine*, Yarn Spinner®, and InkS are all examples of popular tools and
engines for creating choice-based interactive narrative games. RenPy is the most
popular platform for creating visual novels. It is based on a variant of Python and
comes with all the necessary features to create complete experiences. Twine is for
making hypertext games that can easily be shared over the web. YarnSpinner and
Ink are narrative scripting languages intended to be embedded within a larger
game engine. They feature scripting languages that look like screenplay scripts
with code-like markup. The benefit of all these tools is that they handle much
of the lower-level systems tasks, freeing game designers to focus on authoring
dialogue and higher-level systems.

2.3 Storylets

Storylets are a procedural narrative design approach that divides a story’s con-
tent into individual chunks that can be sequenced in differing orders based on
the player’s choices and the current game state [10,21]. Typically, storylets are
gated by preconditions that must be true for them to be eligible for presentation
to the player. Then, through a manual or automatic selection process, storylets
are presented, progressing the narrative. Storylets allow narrative designers to
forgo a pre-authored linear or branching structure, affording players the agency
to chart their own paths through a narrative. We are particularly interested in
exploring them for the intersection between interactive narrative and simulation
since they have shown useful for procedural story generation [11,13].

2.4 Storylet-Based Interactive Narrative Systems

Two experimental storylet systems that directly inspired this project are Sto-
ryAssembler [5], and Lume [13]. Each takes a different approach to creating

3 https://www.renpy.org/.

* https://twinery.org/.

5 https://www.yarnspinner.dev/.

5 https://www.inklestudios.com /ink/.


https://www.renpy.org/
https://twinery.org/
https://www.yarnspinner.dev/
https://www.inklestudios.com/ink/

148 S. Johnson-Bey et al.

dynamic narrative experiences at runtime. Nevertheless, they were both used to
successfully produce interactive games.

StoryAssembler uses a library of pre-authored content fragments to compose
dialogue text and choice sets at runtime. The authors showed how one can com-
bine storylets with a planning algorithm to find sequence content that maximizes
a set of story goals.

Lume uses logic programming to manage a complex knowledge base contain-
ing information about characters, their shared histories, and the state of their
world. It is the most similar to this project and natively supports features that
Anansi does not. For instance, it can procedurally recall past events in the dia-
logue and generate text for those events using grammar-based techniques. Like
Anansi, Lume uses logical queries to cast characters into parameterized sto-
rylets, assuming they satisfy the conditions. The core difference between Lume
and Anansi is the greater focus on simulating the cascading effects of player
choices on the relationships between NPCs.

3 DMotivations and Design Goals

We built Anansi to support an experimental interactive narrative game that
teaches players the Responsible Conduct of Research. In the game, players must
navigate scenarios that place ethical decision-making in conflict with social pres-
sures, such as upholding friendships, negotiating power imbalances, and main-
taining a positive reputation.

The game’s mechanics and our team composition influenced the design
requirements for the final narrative system. We had three design goals for Anansi:
a streamlined authoring interface, dynamic narrative content sequencing, and
moderately complex social relationship modeling.

Our first goal was to provide a streamlined content authoring workflow that
was easy to learn and supported more complex functionality. Also, we needed
it to integrate well with Unity (our game engine of choice). Having too many
tools and workflows in research projects has been shown to cause problems for
multidisciplinary research teams [22].

Second, we wanted to be able to write conversational dialogue that we could
dynamically sequence based on player competency at navigating particular eth-
ical dilemmas, the current relationships between the characters, and other story
state information. Additionally, we wanted to encourage players to replay the
game and experiment with different strategies, as replay and failure are part
of the learning process [18]. We chose storylets because a branching structure
would not scale well to the vast possibility space of states that the social simu-
lation could achieve. Plus [13] showed that dynamically casting characters into
storylets based on preconditions could produce engaging and unique stories.

Our final design goal was to model moderately complex social relationship
mechanics. The social simulation should help guide conversation choices and the
progression of the overall plot. The player should have the power to influence



Building Visual Novels with Social Simulation and Storylets 149

their playthrough’s short and long-term progression by utilizing their under-
standing of social dynamics and the immediate and cascading social conse-
quences of their choices. Simulation games have proven helpful for educational
games because they provide safe spaces for players to experiment [17]. Also,
visual novels are one of the most popular narrative game formats for educa-
tional games. By combining the two, we aim to provide the experimental/sys-
tems qualities of a simulation game with a dialogue-heavy narrative presenta-
tion [1].

4 Ink

Our Unity extension is built on top of the Ink narrative scripting language
created by Inkle Studios. Ink combines pure text with programming markup to
empower writers to create highly branching, choice-based interactive narrative
games. Inkle Studios has used Ink to create several commercial games, including
80 Days [7], Overboard [9], and Heaven’s Vault [8].

Ink’s syntax is easy to learn (See Listing 1.1 for an example). At its simplest,
each line of text in an Ink script corresponds to a line of dialogue in the game, and
writers can display choices to the players by adding an asterisk to the beginning
of a series of dialogue lines. Story content in Ink is usually grouped into sections
called knots. Based on player choices, writers can divert the story to and from
knots, giving rise to the branching narrative flow. In this project, we also heavily
use tags, which are non-dialogue metadata that writers can associate with the
global story, a knot, a choice, or a single dialogue line. Later, we discuss how we
leverage Ink’s knots and knot-level tags to support parameterized storylets that
dynamically cast characters into roles.

We chose to use Ink for four reasons. First, it has excellent integration with
Unity and C+#. Second, we were already familiar with Ink’s syntax. Third, as
stated on the Ink website,“[Ink is] a narrative engine designed to slot into a
game engine.”. This distinction is very important because we wanted the social
simulation to live independently of the writing, and we needed to pre-process the
narrative scripts to extract storylet content. Lastly, we chose to use Ink because
it saved us time from inventing an entirely new language. We could build on a
well-established platform with an active developer community.

5 System Overview

This section provides an overview of Anansi’s system architecture. We mainly
focus on the storylet runtime component. A full explanation of the social simu-
lation is outside the scope of this paper. However, we briefly explain the various
parts with a longer explanation of how it enables writers to create cascading
social effects for dialogue choices.

Anansi helps game designers create location-based visual novels where players
move between locations and talk to characters. Screenshots of a sample game
built using Anansi are provided in Fig. 1. The entire toolkit has four layers: a



150 S. Johnson-Bey et al.

1 |It’s dangerous to go alone. Take this!

2

3 *+ Take sword. # PlaySound: achievement .wav
4 —> adventure_start

5 *+ Leave the sword.

6 —> leave_cave_get_eaten

7

8 adventure_start ——

9 | // This knot continues the story

10

11 |—= leave_cave_get_eaten ——

12 | You leave the cave and get eaten by a monster.
13 |— END

Listing 1.1. A sample Ink story with a single starting dialogue line, two choices, and
two knots. The choices divert to separate knots. The first choice has an Ink tag (starting
with ‘#’) that tells the engine to play a sound when the choice is selected. Lines that
start with “//” are comments and not displayed as dialogue.

presentation layer for Ul, a dialogue layer, a world simulation layer, and a game
management layer (See Fig. 2). Each layer communicates with the others using a
collection of event listeners and callback functions. The only exceptions are the
storylet runtime and the world simulation, which communicate using a Logic
database (explained later).

The dialogue layer manages the flow of dialogue that is presented to the
player via the UI Layer. It is also responsible for post-processing information
from the storylet runtime to manage, among other things, which character to
present on screen, the name of the speaker, and the current background to show.
The storylet runtime is responsible for managing the flow of the story. It wraps
an Ink story instance and provides additional infrastructure for instantiating,
searching for, and sequencing storylets.

The database is the connective tissue between the world simulation and the
storylet runtime. It originally existed as part of the relationship system but was
later integrated into the storylet runtime to facilitate leveraging social simulation
data in the story. The simulation syncs various bits of data with the database
to make that information available to storylet queries.

The presentation layer is responsible for displaying the current speaker, the
speaker’s sprite, and any background images. This part of the extension is flexible
and can be swapped out by end-users for something that better fits their game’s
style.

5.1 The World Simulation

The world simulation manages all the aspects of the social simulation (charac-
ters, the locations in the world, relationships between characters, social rules



Building Visual Novels with Social Simulation and Storylets 151

Lunch, Day 15

Astrid
!A Hey! Thanks for asking me to lunch. *stomach growls*. What do you want to eat?

Lunch, Day 15

Talk to Astrid

Talk to Momo

Talk to Giyu

Fig. 1. Our extension provides users with two basic Ul modes, one for dialogue (Top)
and another for world navigation (Bottom). The dialogue UTI has the standard visual
novel features: a text box for dialogue, a dialog box containing available choices, a
background image, and an image of the currently speaking character. The world nav-
igation UI has a background image, a status bar displaying the current location and
time, and an interaction panel with buttons for choosing actions or moving to other
locations.

governing relationships, and social events that change relationships). The simu-
lation operates on discrete time steps/ticks. On each simulation tick, we update
the current time, move characters to various locations based on their given sched-
ules, update any timed modifiers, and trigger any eligible social events. Our social



152 S. Johnson-Bey et al.

Ul Presentation Layer

Dialogue Controller

Storylet Runtime

Current

Storylet

—_—— =

Storylet Logic : On Deck
Database Database g Semi

World Simulation
(Character/Location/Relationship data)

Game Manager

Fig. 2. The extension is divided into four layers. The Ul manages what is seen by
the player. The dialogue controller manages an instance of the story runtime and
feeds dialogue lines and other information to the UI. The world simulation manages
characters, locations, and social relationships. It feeds information into the database
for the storylet runtime. Last, the Game Manager coordinates resource instantiation
and manages all game-specific data not handled by the dialogue layer.

sim is intended to breathe more life into the story world by allowing characters
to reason about their relationship with the player and their relationships with
other characters. We wanted characters to change their opinion of the player
based on how they treat other characters around them. For instance, being nice
to a character’s family member should help you gain favor with that character.
Or, betraying a character should cause you to lose favor with their loved ones
but gain favor with their enemies.

Characters. All characters have a unique ID, a display name, a current loca-
tion, a collection of sprites, and a collection of schedules. Their IDs are used to
identify them as the speaker within the story. They are also used to reference the
character within the story database. Currently, we use the relationship system
(explained later) to track information about character traits and their stats.

Character Schedules. Character schedules tell characters what location they
should move to at a given time of day. Users can supply characters with multiple



Building Visual Novels with Social Simulation and Storylets 153

schedules, each containing entries specifying what time of day they are for, the
location to move to, and their priority. We use entry priorities since characters
can have multiple valid schedule entries for the same time of day [6]. Users may
also precondition schedules on the current date, individual NPC variables, or
relationship states.

Locations. Locations are anywhere that characters can be. Like characters,
each location has a unique ID, a display name, and a collection of sprite images.
Locations also track what characters are present.

On the writing side, we associate storylets with locations by giving storylets
the same unique ID as the location they correspond to. We also add “location”
to the storylet’s tag set so the game manager can retrieve it. Every location the
player can navigate to must have a corresponding storylet. The storylet does
not need to contain dialogue, but it should contain function calls to update the
background image and the player’s location in the simulation.

Relationship System. The relationship system is responsible for tracking the
social relationships between characters, relationship traits, relationship stats,
social rules, and social events. It stores relationship information as a directed
graph of characters (nodes) and relationships (edges), creating a social network.
Each relationship tracks how one character feels about another. Thus allowing
characters to have asymmetric feelings toward each other. Relationship informa-
tion is also synced with the story database.

A full explanation of the relationship system is outside the scope of this paper
and will be the subject of another publication. However, the system is publicly
available to download within Unity’s asset store’.

Date/Time. The world simulation tracks the current week, weekday (7-day
weeks), day, and time of day (morning, afternoon, evening, night). Currently, the
time is mainly used to manage character schedules. Locations may also update
their backgrounds if they have one tagged for the current time of day. Addi-
tionally, the current date/time is also synced with the story database, allowing
writers to use it within storylet preconditions and other logic.

Writers can advance time from the Ink script using the AdvanceTime () Ink
function that steps the simulation until the next time of day is reached. The
time of day is incremented every fixed number of simulation steps. This interval
can be specified by the game designer in the Unity editor. Whenever the current
date/time is updated, the simulation also emits an event that allows third-party
systems to react to the change in time.

The Logic Database. The relationship system uses a logic database
to facilitate querying for relationship patterns and other information

7 https://github.com/ShiJbey/TDRS.


https://github.com/ShiJbey/TDRS

154 S. Johnson-Bey et al.

https://github.com/ShiJbey/RePraxis. The database is based on the Prazis lan-
guage used in the Versu engine [4]. It uses the same exclusion logic syntax and
has been streamlined for data insertion, deletion, and queries.

Casting characters into storylets requires us to be able to find characters
that meet specific preconditions. So, the relationship systems logic database is
shared with the storylet runtime (discussed later) to allow writers to leverage its
query system to find character IDs and store them within variables in the Ink
script. Database queries are used within the storylet runtime for preconditions,
and writers can assert/insert/delete statements directly within Ink. The query
syntax used in storylets is passed directly to the logic database when instanti-
ating storylets. The logic database is the core way for the Ink logic to access
information about the world simulation when designing storylets.

Cascading Social Effects. Anansi uses social events to create cascading social
effects in response to player choices. Social Events are a construct of the rela-
tionship system. They are instantiated by binding characters to specified roles.
Then, based on who is bound and any additional preconditions, the event exe-
cutes changes to the relationship system and its characters.

The following is an example inspired by a scenario one might encounter
within the RCR training game. It showcases an example of how a writer might
approach presenting the player with a choice that has ripple effects across their
social network.

Suppose the player has been given control of a character named Avery, a
new graduate student in a highly competitive lab. They recently discovered that
their labmate and friend, Chris, falsified data on a paper they were a co-author
on. Chris, a more senior PhD student, is popular in the lab and claims this
publication is essential to their dissertation defense. Avery understands that if
someone were to find out about the falsified results, it could be detrimental to
their research career. However, Avery also worries that notifying their advisor
could ostracize them from their other labmates. What will Avery do?

A simplified storylet of the above scenario might look like the Listing 1.2. In
it, we define a storylet that would cast an NPC in the role of the labmate, display
some dialogue, and give the player a choice of how to handle the situation. The
DISPATCH_EVENT function is used to call into the social simulation to fire an
event in which the player betrays the trust of the labmate (in this case, Chris).
Listing 1.3 defines a betrayal event in our social simulation. It uses a query to
the logic database to find all friends of the person who was betrayed so that we
may adjust how they feel toward the betrayer (in this case, the player/Avery).

5.2 The Storylet Runtime

Anansi’s storylet runtime allows us to leverage the social simulation within the
Ink scripts by dynamically casting characters using logical queries. The runtime
is a C# class wrapper around a standard Ink Story class instance that allows us


https://github.com/ShiJbey/RePraxis

Building Visual Novels with Social Simulation and Storylets 155

1 |—= false_data_dilemma (labmate) ——

2 |# —

3 |# Qquery

4 |# player.relationship.?labmate.tags.coworkers

5 |# @end

6 |# —

7 |// Other Dialogue

8 |* Talk to your advisor about your discovery

9 {DISPATCH.EVENT(” betrayal”, ”"player, {labmate}”)}
{ADVANCE.TIME () }

10 —> // Go to other part of the story

11 |* Check in with {CHARACTERNAME(labmate)}

12 —> // Start conversation with labmate

13 |* Let it be and hope no one finds out.

14 {ADVANCETIME()} // Advance time and simulate if the
misconduct is discovered

15 —> // Go to other part of the story

16 |—> DONE

Listing 1.2. “Avery’s Research Misconduct Dilemma.”

to extract storylet information and high-jack Ink’s native control flow. We are
able to interleave Ink-native branching and dynamic jumps to storylets.

In Anansi, storylets can be used to represent locations, actions players can
take at a location, individual conversations, and scenes. We use them anywhere
we want to conditionally gate or parameterize a bit of story content based on
the state of the social simulation.

Anansi allows writers to treat character conversations as a “mystery bag” of
topics that the game randomly selects from and presents to the player. Addi-
tionally, writers can associate selection tags and weight values to storylets to
affect their eligibility and likelihood of being selected.

5.3 Defining Storylets

Anansi storylets are Ink knots with specialized metadata. All the metadata about
a storylet is stored in its header. This is a collection of Ink tags placed below
the name of the storylet. The header contains information about a storylet’s
weight of being selected, choice label (text displayed when offering the storylet
as a choice), selection tags, repeatability, and cooldown time (see Listing 1.4).
When loading a new Ink script, Anansi inspects all the knots in the script and
extracts those containing storylet headers.

Additionally, there are also commands for working with precondition queries.
All precondition queries have a @query ... @end section where all lines between
@query and @end are collected to form a single query. We also supply users with
the @set X to 7Y and @using X as ?Y commands for binding query variable
value to Ink variables and vice-versa.



0~ O T Wi+

10
11
12
13

156 S. Johnson-Bey et al.

— name: Betrayal
roles:
— 7?betrayer”
— 7?victim”
description: ”[betrayer] betrayed [victim].”
responses:
— effects:
— DecreaseRelationshipStat ?victim 7betrayer
Friendship 10
— preconditions:
— ?victim.relationships.? victim_friend . traits.friend
— neq ?victim_friend ?betrayer
effects:
— DecreaseRelationshipStat ?victim_friend ?betrayer
Friendship 5

Listing 1.3. “A betrayal social event defined using YAML.”

Precondition queries are how we cast characters into roles. Within the query
section of the storylet header, designers can precondition storylets on the position
of characters in the world, any of their existing relationships, or their personal
stats. Using variables (e.g., “?7Y”) within a query will cause the system to try
and find a value in the database that satisfies the query when the variable is sub-
stituted. So, we bind character IDs to variables within query results in C# and
rebind those variables to Ink-level variables. In Listing 1.2, the storylet header
queries for a player relationship with the tag, “coworker”. It binds the result-
ing character ID to “?labmate” and passes the resulting value to the “labmate”
parameter variable in the Ink knot.

5.4 Instantiating Storylets

For a storylet to be available, we need to be able to instantiate it. This means,
if the storylet has a precondition query, when that query is run against the logic
database, the query must be successful. If the query contains variables, Anansi
creates individual storylet instances for each valid set of variable bindings. If the
query does not contain variables or there is no query at all, Anansi creates a single
storylet instance. The storylet instances of all eligible storylets represent selection
space when Anansi needs to choose a new storylet. For example, suppose we have
a storylet about having lunch with a friend (see Listing 1.4). It requires the player
to be in a location that serves food and for an NPC that considers the player a
friend to be present in the same location. If there are two NPCs that meet the
criteria, this will result in two potential storylet instances to choose from, one
for each valid NPC.

Whenever we run a storylet instance, the runtime binds all the instance’s
variables to the story state and stores a reference to the current instance. From
here, the runtime passes control down to Ink’s runtime. When the writer wants



Building Visual Novels with Social Simulation and Storylets 157

1 |== lunch_with_friend =—=

2 |# —

3 |# tags: convo

4 |# Qusing speaker as 7speaker

5 |# Qquery

6 |# 7speaker.relationships.player.traits.friend

7 |# player.location.traits.serves_food

8 |# @end

9 |# —

10 | {speaker }.happy: Hey! Thanks for asking me to lunch.

xstomach growls*. What do you want to eat?
11 | % Pizza

12 —> // Dialogue about pizza
13 |+ Waffles

14 —> // Dialogue about waffles
15 |« Tacos

16 —> // Dialogue about tacos
17 |—> DONE

Listing 1.4. “An Ink knot containing a storylet header with associated metadata.”

to jump the story to another storylet, they call helper functions that “queue”
a storylet to be executed next. If the runtime can successfully instantiate the
storylet, it selects one of the instances, using weighted random selection, and
saves this instance as “on deck”. So, when the story is advanced, we swap the
active storylet with the one on deck, jump to its knot path in the Ink runtime,
and continue the story. Since all this is hidden from the user, they see a seamless
continuation of dialogue content, just like with branching diverts in Ink.

5.5 Enabling Gameplay

Locations are places where characters can be, and actions are things the player
can choose to do when at a location. Actions and locations are represented
as storylets containing “action” and “location” tags, respectively. The Game
Manager is responsible for determining which actions and locations are available
given the player’s current location and the state of the rest of the simulation.

Representing actions and locations as storylets allows us to maintain most of
the authoring effort within Ink scripts. Also, it means that we can trigger special
dialogue or events when a player navigates to a location or takes an action.
The storylet representation provides a nice middle-ground between gameplay
mechanics and narrative flow.

The background image changes with the current location and time of day.
We are working on allowing writers to change the background image on a per-
dialogue line basis using Ink tags.

The speaker sprite changes based on the specified speaker ID and sprite tags
provided in the Ink dialogue. The dialogue manager post-processes each dialogue



158 S. Johnson-Bey et al.

line and extracts any ID and optional tags provided prior to a colon “:”. To illus-
trate, the line, “ben.smiling.blue_shirt: Howdy!” will attempt to display a sprite
of the character with the ID of “ben” and tags for “smiling” and “blue_shirt”.
When the line is fed from the dialogue manager to the Ul, the speaker informa-
tion is removed, and only “Howdy!” is displayed.

6 Discussion

In this section, we discuss lessons learned and challenges encountered thus far
while developing our educational game using Anansi.

6.1 Designing for Fungible Characters

Characters in Anansi are fungible. This means that, depending on the storylet,
we can substitute them with any other character that meets the storylet’s pre-
conditions. This is great for incremental development, games using characters as
downloadable content, or games with procedurally generated characters because
new characters can be leveraged in existing content without any need to explic-
itly write them into the story. However, the downside of this fungibility is that
dialogue lines might not fit the characters being cast or the social dynamics
associated with them.

Not all characters speak the same way, and not all characters interact with
each other in the same way. Dialogue lines must account for the individual per-
sonality of the character and their social context. Is the character speaking with
a new acquaintance, an old friend, or a love interest? What is the character’s
personality? Are they boisterous or reserved? Do they like using fancy words to
appear erudite, or do they use more colloquial terms?

The responsibility falls on writers to add conditional checks within the Ink
script to ensure the appropriate dialogue lines are presented to the player. Thus
far in our game development, we have found that limiting the number of dynam-
ically cast characters and being more specific about trait/relationship require-
ments in storylet precondition queries helps temper the combinatorial complex-

ity.

6.2 The Tendency Toward Traditional Branching

Storylet and social simulation systems have a learning curve for those unfamiliar
with procedural narrative design. They require writers to think about the story
as a possibility space for things to happen rather than a series of set plot paths
for players to traverse. Tracking the story state is challenging because, at times,
writers cannot fully guarantee what the player has seen or done. There could be
multiple ways for players to reach the same place in a story.

When teaching historians how to use a social simulation system for interactive
storytelling, DeKerlegand et al. noticed that new users tend to avoid dynamism
in favor of structuring content to resemble linear and branching structures [3]. A



Building Visual Novels with Social Simulation and Storylets 159

similar phenomenon was encountered by Garbe et al. when writers were tasked
with creating story content within StoryAssembler [5]. Writers tended to avoid
more dynamic/procedural designs to quickly reach operational results.

Even as we develop our educational game, we occasionally fall into the trap of
a strictly branching narrative design. Keeping track of all the information during
the design phase is challenging. As we continue development, we aim to iden-
tify techniques to help others become more comfortable with the combinatorial
complexity of storylets and social simulation for interactive storytelling.

6.3 Deciding Between Ink Variables or the Database

Anansi provides two options for storing variables/game state: Ink variables and
the logic database. We use Ink variables whenever possible because they have full
support within the Ink language. When we need the social simulation to respond
to a value in Ink, we store a copy of the value in the logic database. This requires
an additional step, but it allows for additional bi-directional communication
between the story content and the social simulation.

7 Future Work

We are currently using Anansi to develop an interactive narrative game that
teaches players about ethics and the Responsible Conduct of Research within
academia. Players must navigate various scenarios that place ethical decision-
making in conflict with navigating social pressures. We plan to report a post-
mortem of our development experience and an analysis of the players’ feelings
and learning outcomes.

Additionally, we want to elicit qualitative feedback from a broader audience
by conducting a user experience test as a 48-hour game jam. Participants will be
tasked with creating a visual novel game using Anansi. At the end of the jam,
participants will submit their games and complete a system usability survey
regarding their experience. We will analyze how participants utilize Anansi’s
features and identify what works well, needs improvement, or is missing.

8 Conclusion

In this paper, we provided a system overview of Anansi, our Unity extension for
building visual novels using a combination of social simulation, storylets, and
branching choices. Anansi’s storylet runtime allows storytellers to write storylets,
define roles for who may be involved, and have characters dynamically into those
roles based on their relationships and the current story state. This enables sto-
rytellers to reuse content and customize it for different character combinations.
Additionally, leveraging a social simulation enabled us to provide players with
story choices that can have immediate and cascading social effects on their rela-
tionships with NPCs. By combining simulation-driven gameplay, storylets, and



160 S. Johnson-Bey et al.

hand-authored branching narrative content, we aim to support game replayabil-
ity and player exploration while providing storytellers with adequate authorial
control over the plot.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. 2202521. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Camingue, J., Melcer, E.F., Carstensdottir, E.: A (visual) novel route to learning: a
taxonomy of teaching strategies in visual novels. In: Proceedings of the 15th Inter-
national Conference on the Foundations of Digital Games. FDG 2020. Association
for Computing Machinery (2020). https://doi.org/10.1145/3402942.3403004

2. Crawford, C.: Chris Crawford on Interactive Storytelling. Pearson Education
(2004)

3. DeKerlegand, D., Samuel, B., Treanor, M.: Pedagogical challenges in social physics
authoring. In: Mitchell, A., Vosmeer, M. (eds.) Interactive Storytelling, pp. 34-47.
Springer, Cham (2021)

4. Evans, R., Short, E.: Versu-a simulationist storytelling system. IEEE Trans. Com-
put. Intell. AT Games 6(2), 113-130 (2013)

5. Garbe, J., Kreminski, M., Samuel, B., Wardrip-Fruin, N., Mateas, M.: Storyassem-
bler: an engine for generating dynamic choice-driven narratives. In: Proceedings
of the 14th International Conference on the Foundations of Digital Games. FDG
2019. Association for Computing Machinery, New York (2019). https://doi.org/10.
1145/3337722.3337732

6. Graham, R.: Game Al Pro, chap. Breathing Life into Your Background Characters.
CRC Press (2013)

7. Inkle: 80 days. [iOS, Android, Microsoft Windows, MacOS, Nintendo Switch]

(2014)

Inkle: Heaven’s vault. [Nintendo Switch, PlayStation 4, Microsoft Windows] (2019)

9. Inkle: Overboard. [Nintendo Switch, Android, Microsoft Windows, i0S, MacOS]
(2021)

10. Kreminski, M., Wardrip-Fruin, N.: Sketching a map of the storylets design space.
In: Rouse, R., Koenitz, H., Haahr, M. (eds.) Interactive Storytelling, pp. 160-164.
Springer, Cham (2018)

11. Lessard, J., Paré-Chouinard, S.: Dramatic situations for emergent narrative system
authorship. In: Vosmeer, M., Holloway-Attaway, L. (eds.) Interactive Storytelling,
pp. 217-228. Springer, Cham (2022)

12. Louchart, S., Truesdale, J., Suttie, N., Aylett, R.: Emergent narrative: past, present
and future of an interactive storytelling approach. In: Interactive Digital Narrative,
pp. 185-199. Routledge (2015)

13. Mason, S., Stagg, C., Wardrip-Fruin, N.: Lume: a system for procedural story gen-
eration. In: Proceedings of the 14th International Conference on the Foundations
of Digital Games. FDG 2019. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3337722.3337759

®


https://doi.org/10.1145/3402942.3403004
https://doi.org/10.1145/3337722.3337732
https://doi.org/10.1145/3337722.3337732
https://doi.org/10.1145/3337722.3337759

14.

15.

16.

17.

18.

19.

20.

21.

22.

Building Visual Novels with Social Simulation and Storylets 161

Mateas, M., Stern, A.: Fagade: an experiment in building a fully-realized interactive
drama. In: Game Developers Conference, vol. 2, pp. 4-8. Citeseer (2003)

Mateas, M., Stern, A.: A behavior language: joint action and behavioral idioms.
In: Life-Like Characters: Tools, Affective Functions, and Applications, pp. 135-161.
Springer, Heidelberg (2004)

McCoy, J., Treanor, M., Samuel, B., Reed, A.A., Wardrip-Fruin, N., Mateas, M.:
Prom week. In: Proceedings of the International Conference on the Foundations of
Digital Games, pp. 235-237 (2012)

Minnery, J., Searle, G.: Toying with the city? Using the computer game simcity
in planning education. Plan. Pract. Res. 29(1), 41-55 (2014)

Mitchell, A.: Writing for replay: supporting the authoring of kaleidoscopic interac-
tive narratives, pp. 131-145. Springer, Cham (2022)

P-Studio: Persona 5. [Nintendo Switch, PlayStation, Xbox, Windows] (2016)
Riedl, M.O., Bulitko, V.: Interactive narrative: an intelligent systems approach.
AT Mag. 34(1), 67 (2012). https://doi.org/10.1609/aimag.v34i1.2449. https://ojs.
aaal.org/aimagazine/index.php/aimagazine/article/view /2449

Short, E.: Storylets: You want them (2019). https://emshort.blog/2019/11/29/
storylets-you-want-them/

Szilas, N., Spierling, U.: Authoring issues in interdisciplinary research teams, pp.
287-302. Springer, Cham (2022)

TM4


https://doi.org/10.1609/aimag.v34i1.2449
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2449
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2449
https://emshort.blog/2019/11/29/storylets-you-want-them/
https://emshort.blog/2019/11/29/storylets-you-want-them/

	Building Visual Novels with Social Simulation and Storylets
	1 Introduction
	2 Related Work
	2.1 Simulationist Interactive Narrative
	2.2 Tools for Creating Choice-Based Interactive Narratives
	2.3 Storylets
	2.4 Storylet-Based Interactive Narrative Systems

	3 Motivations and Design Goals
	4 Ink
	5 System Overview
	5.1 The World Simulation
	5.2 The Storylet Runtime
	5.3 Defining Storylets
	5.4 Instantiating Storylets
	5.5 Enabling Gameplay

	6 Discussion
	6.1 Designing for Fungible Characters
	6.2 The Tendency Toward Traditional Branching
	6.3 Deciding Between Ink Variables or the Database

	7 Future Work
	8 Conclusion
	References


