
Neighborly: A Sandbox for Simulation-based
Emergent Narrative

Shi Johnson-Bey
Computational Media Department

UC Santa Cruz
Santa Cruz, CA, USA

ismajohn@ucsc.edu

Mark J. Nelson
Computer Science Department

American University
Washington, DC, USA
mnelson@american.edu

Michael Mateas
Computational Media Department

UC Santa Cruz
Santa Cruz, CA, USA

mmateas@ucsc.edu

Abstract—This paper presents Neighborly, a customizable,
community-scale social simulation engine for procedurally gen-
erating settlements of characters for use in research exper-
imentation or entertainment media. Neighborly is a rational
reconstruction of Talk of the Town (TotT), an earlier social
simulation for emergent narrative focused on simulating small
American towns and the townspeople’s lives. Based on Talk of
the Town’s previous success as part of the experimental game
Bad News, we wanted to reconstruct it as a general-use social
simulation authoring tool. In this paper, we delineate the design
space of TotT-like social simulation and compare TotT-likes to
other academic projects and commercial social simulation games.
Finally, we provide an overview of how Neighborly embodies
the essence of TotT while offering users a customizable tool for
creating community-scale social simulations.

Index Terms—social simulation, procedural generation, au-
tonomous characters, story generation

I. INTRODUCTION

Emergent narrative is a sub-domain of computational nar-
rative (creating stories using computers and computation)
focused on generating stories organically from the bottom-
up interactions between individual agents and systems [1],
[2]. Agent-based social simulation (ABSS) has shown to be
an effective tool for creating dynamic emergent narratives in
video games. ABSS in games model characters as individual
agents with attributes that drive their social interactions/behav-
iors with other characters and the player. Emergent narratives
are then produced from the bottom-up interactions between
individual agents. Both academic and commercial games have
used ABSS to create unique interactions between non-player
characters (NPCs) and players. Two examples of commercial
games known for their social simulations are the Middle
Earth™: Shadow of Mordor/Shadow of War series [3], [4] and
The Sims™4 [5]. The Middle Earth™ games’ core feature is
the Nemesis System which simulates a dynamic power struc-
ture of Orcs vying for dominance and the player’s evolving
nemesis-style relationships with these orcs. Players engage in
“revenge-loop” narratives where they battle orcs over multiple
in-game lives and influence the orc power structure based on
their victories and defeats. The Sims™4 [5] gives players the
experience of a virtual dollhouse, where players dictate how
NPCs go about their daily lives, meeting other characters,
forming relationships, gaining skills, and having families. In

academia, games such as Prom Week re-imagine the goal
of becoming prom-king as a social physics puzzle requiring
a planned series of social interactions [6]. While these are
entirely different experiences, social simulation plays a core
role in powering them and providing players with the joys of
witnessing emergent scenarios unfold.

Talk of the Town (TotT) was one of the most prominent
academic social simulation projects within the past decade [7]–
[11]. It simulates a small, procedurally generated American
town for over 100 virtual years, starting from its founding in
the mid-19th-century. Towns can range from small ghost towns
to bustling social centers with more than 200 residents. TotT
uses a simple model of abstract social mechanics combined
with pseudo-randomness and population statistics to produce
engaging emergent narratives about star-crossed lovers, gener-
ational rivalries, family legacies, and romantic love triangles
[1]. TotT was used in the experimental game Bad News [12],
in which the player explores a generated town looking for the
next of kin of a deceased NPC. They do this by interacting
with various NPCs via a human improv-actor who embodies
characters using information generated by TotT’s simulation.
Bad News was featured at Slamdance [13] and Indiecade, and
covered in numerous press venues including The Guardian [8]
and Rolling Stone magazine [14].

Previous work has utilized TotT’s effectiveness as a content
generator to power their own experimental games [15] and
interactive narrative authoring systems [16]. We wanted to do
the same but ran into limitations when trying to customize
TotT’s narrative setting. Projects treat TotT as a black-box
content generator. However, we wanted more authorial control
over the types of roles NPCs can have, the businesses they can
own, and their internal decision-making logic. TotT was not
designed to be used for anything other than Bad News. So
it incorporates ad-hoc assumptions about Bad News’ setting
into the core simulation code, offering little in the way of
code abstractions and authoring support for modifying and
extending the simulation. For example, suppose someone
wants to investigate the impact of a new personality model
on character behavior and the stories that emerge. TotT does
not afford avenues to feasibly integrate custom modifications
outside of its existing infrastructure. Thus, replacing the Big-5
personality model currently employed by TotT would require a

425

2022 IEEE Conference on Games (CoG)
Beijing, China, August 21-24, 2022

978-1-6654-5989-1/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 G

am
es

 (C
oG

) |
 9

78
-1

-6
65

4-
59

89
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
oG

51
98

2.
20

22
.9

89
36

31

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

complete rewrite of the relationship model, character routines,
and event logic. This tight coupling between different elements
of the simulation makes it impossible to experiment with al-
ternative representations, decision-making logic, and narrative
settings.

We believe that it would be beneficial to have an authoring
tool that enables users to leverage TotT’s emergent narrative
generation capabilities to power new social-simulation-based
player experiences. In this paper, we delineate the design
space of TotT-like social simulation and compare it to other
academic and commercial social simulations. Finally, we
provide an overview of our prototype system Neighborly,
a customizable, community-scale social simulation engine,
and rational reconstruction of TotT. Neighborly embodies the
essence of TotT while offering users a customizable tool for
community-scale social simulation.

II. BACKGROUND AND RELATED WORK

This project was motivated by experiences using TotT in
previous projects. Our goal was to take advantage of its
potential for generating emergent scenarios between charac-
ters to experiment with how different simulation parameters
and decision-making logic result in different distributions of
emergent narrative situations. An earlier project, Centrifuge,
developed a visual story-sifting language for use in such exper-
imentation [17]. Further, we were interested in exploring the
potential of TotT to support different media experiences with
alternative narrative settings and character decision-making
logic.

TotT’s representations of town businesses, character oc-
cupations, life events, and residences provide an excellent
infrastructure for defining narrative settings and situations.
However, as we tried to perform such experiments, we ran
into the issues of hard-coded specific assumptions that are
described in the introduction above. Even relatively simple
changes, such as changing the narrative setting from a small
American town to a space colony, required significant changes
to the simulation code.

This project started as a minor refactor and evolved into a
complete reconstruction. In the process of this reconstruction,
we identified the core features that define TotT-like social
simulations (in comparison to other social simulations) and
developed a new infrastructure, Neighborly, that supports end-
user experimentation and authoring. Here we provide the
background and related work that define TotT-like social
simulation, as well as provide some background on rational
reconstruction.

A. Talk of the Town

TotT is as a simulationist story generator [1] focused on
simulating small, 19th-century American towns over a 140-
year period. Simulationist means that content is generated
without user intervention. It relies solely on the bottom-up
interactions of individual characters and systems to produce
interesting content. TotT is not a game experience, but a
content generator inspired by by the world generation system

of Dwarf Fortress [18]. We were drawn to TotT because of its
emergent potential and its swift town generation (simulating
decades in minutes). Also, its code was available online1,
enabling us to get hands-on experience without attempting to
reimplement it from published literature.

Towns can potentially hold hundreds of characters. So, to
optimize computational performance, TotT focuses on only
simulating the major events in characters’ lives and uses a
variable level-of-detail approach to model the passage of time.
Days were split into day/night cycles, and only a certain
percentage of days were modeled each year. The changes to
the simulation between update calls are then interpolated to
make sense of the time skip. Using this technique, TotT can ef-
ficiently simulate the lives of hundreds of characters, including
their relationships, occupations, personalities, businesses, and
residences. For a more in-depth discussion on TotT’s internal
systems, please see [1].

Previous projects have used TotT as a base to build on.
Hennepin, was the spiritual successor to TotT [1]. It built on
the foundation of character modeling done in TotT and revised
parts such as personality models and event causality to provide
a more explainable environment for emergent narratives. For
instance, the revised personality model, borrowed from Dwarf
Fortress, supports users in more easily inferring character
behavior from personality traits. Other projects include Stories
of the Town, which integrated TotT into a more extensive
adversarial character-driven story generation pipeline [16], and
Argument Box, and experimental game exploring character
moral values [15].

B. Rational Reconstructions

Rational reconstruction, as applied to AI systems, is a
methodology for understanding the essential design decisions
of a system by attempting a clean re-implementation, whose
refactoring supports experimentation [19]. The goal is to un-
derstand what makes a particular system work, its scope, and
its limits, separated from details of the initial implementation
that may or may not be core to its success.

Rational reconstructions allow us to better understand a
system’s contribution and potential by observing what happens
when altering core components. Previous projects have also
used rational reconstructions to investigate story generation
and simulation systems [20]–[22]. Minstrel Remixed [21]
and Skald [20] are rational reconstructions of Scott Turner’s
original Minstrel system [23]. Similarly, the Ensemble Engine
[22] could be interpreted as a rational reconstruction of Comme
il Faut (CiF) [24], the social physics engine behind Prom
Week [6]. Ensemble took CiF’s social model, removed the
experience-specific constructs used in Prom Week, and gave
users a general schema for creating social simulations with a
small cast of characters.

III. WHAT ARE TALK OF THE TOWN-LIKES?
We define Talk of the Town-likes (TotT-likes) as a design

space of agent-based social simulations in games character-

1https://github.com/james-owen-ryan/talktown

426

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

ized by procedurally generated character settlements, socially-
grounded characters, abstract social interactions, and a focus
on characters’ major life events. Here we explain each of these
characteristics in more detail and discuss how they relate to
other types of social simulation tools and games.

We compare TotT to the following social simulation arti-
facts:

• Versu [25] – The framework used to create interactive
fictions involving small casts of characters and many
nuanced social actions. It is best known for the game
Blood and Laurels [26].

• PsychSim [27] – Framework for authoring characters that
make decisions using theory of mind mental models of
other characters.

• Kismet [28] – A small social simulation authoring lan-
guage that is a spiritual successor to Talk of the Town.

• Ensemble [22] – Tool for creating social simulations
with a cast of characters who make decisions based on
authored volition rules.

• Crusader Kings II (CKII) [29] – Commercial game
about maintaining your bloodline, by conquering land,
navigating relationships with other kingdoms, and passing
your power to your heir.

• The Sims™4 [5] – Canonical social simulation game
where players influence and observe the lives of their
characters.

A. Procedurally Generated Settlements

TotT-like social simulations focus on community-scale sim-
ulation (10s-100s of agents) with characters living in various
residential buildings. The original version simulated the his-
tory of a small American town from the mid-1800s through
to the late 1900s. TotT-likes are geared towards modeling
hundreds of characters, their lives, and relationships. TotT-
likes do not have a specific narrative aesthetic. They can range
from historical fiction to high fantasy to science fiction.

The locations and population of characters are not fixed.
They evolve during simulation with the ebb and flow of
residents. In the original system, characters can move in/out
of the town as businesses open and close, and characters grow
old and die. This aspect is different from a number of the other
social simulation systems. Ensemble and Versu, for example,
use a fixed cast of characters. PsychSim allows users to add
characters at runtime, but the characters do not occupy any
location.

In addition to the residents, towns are made up of multiple
locations that characters can travel to. Locations can be
businesses, homes, and public spaces like parks. TotT-likes
allow characters to move between the multiple locations in
the town: for example, going to the store, going to work, and
going home. This movement is the core of how they form their
social networks, as characters only interact with those who
are at the same location as them. Movement is not smooth,
but rather characters teleport from place to place. There is no
concept of space or occlusion within a location. All characters
are assumed to be visible to all others present at their location.

Other games like Crusader Kings II [29], model the lives
and legacies of characters over a long expanse of time, but
these characters are static in their positioning. They cannot
move from country to country as individuals. The Sims™4
offers similar capabilities to simulate towns and lives and
deaths of residents. However, its movement is continuous in
3D space. Most academic social simulations focus mainly on
modeling a specific social phenomenon and thus do not need
to model multiple locations. Prom Week and PsychSim do not
model locations at all, as they focus more on action selection.

B. Socially Grounded Characters

The biggest separator between TotT-likes and other aca-
demic social simulations is that it supports characters owning
homes, running businesses, and working jobs. These add an
extra layer of narrative material to the mix. Businesses are
a dynamic part of TotT’s landscape and afford the formation
of business rivalries, workplace friendships, and power imbal-
ances. Owning homes assumes that characters have neighbors.

TotT-likes include more than just social interaction mod-
eling. They include the entire town where characters live.
This social landscape embeds characters in an environment
of social and physical relationships that emerge dynamically
from the simulation. Academic social simulations tend not to
have these features. Instead, they focus on modeling a specific
social phenomena and less on creating a story world. However,
commercial games with social simulations often support such
a social landscape, though it is sometimes embedded within a
pre-authored story world.

C. Abstract Social Interactions

TotT-likes model interactions between characters using sim-
ple models of abstract social interactions. For example, TotT
only has one explicit “socialize” action available to characters.
The relationship model determines the side effects of this
socialize action. This is in contrast to having a large number
of differentiated actions such as flirt, greet, insult, and gossip.
For example, The Sims™4 provides players with many types of
social actions for characters to perform. Versu presents players
with many nuanced options based on the currently active social
practices [25]. Prom Week also gives players plenty of actions
for “woo”-ing their crush and climbing the social ladder [6].

In TotT-likes, the interaction resolution is kept low because
the simulation mainly focuses on modeling the major life
events of characters. Because of this, as well as the larger
simulation-scale (number of characters) at which the original
TotT operated, time steps are stochastically sampled. Not all
time steps are simulated with complete character updates.
Therefore, more complex and concrete actions that may re-
quire multiple time steps for character actions and reactions
are not modeled. Instead, actions are atomic operations with
immediate side effects.

D. Major Life Events

Related to the above point, TotT-like towns can have hun-
dreds of autonomous characters running around. It is not

427

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

feasible to simulate their lives at the same level of detail as on-
screen characters in The Sims™4. As a solution, TotT models
the characters’ macro or major life events. These events in-
clude births, deaths, marriages, divorces, job promotions, and
moving into a new home. This is where the story generation
magic of TotT-likes resides. TotT-likes simulate the major
skeleton of a character’s life, leaving it up to users to fill in
the gaps with their imagination.

Apophenia is the human tendency to see patterns in random
or unrelated things, and it is the glue that makes this fidelity
of simulation work for generating narratives. TotT-likes craft
low-fidelity stories about characters without detracting from
the coherence of their stories. The rest is literally left as an
exercise for the reader. Ryan supplied many narrativized traces
of stories curated from the original TotT [1]. It is fascinating
how with a bit of narrative scaffolding, people can piece
together more elaborate stories than the simulation actually
models.

From our sample of social simulation artifacts, none of them
place a specific focus on simulating characters’ major life
events. We consider the closest analog to be the The Sims™4’s
low level-of-detail simulation for off-screen characters [30].
One would think that CKII would be the most similar given
the large span of in-game time it simulates, but CKII has a
surprisingly large number of events that range from major
milestones to minute events such as your child being afraid
of the dark. Ensemble, PsychSim, and Versu do not simulate
characters life events at this scale. Events are more like the
moment-to-moment changes to the social state resulting from
characters performing actions.

IV. NEIGHBORLY

Neighborly is a social simulation sandbox for creating TotT-
likes. It is our rational reconstruction of Talk of the Town. Its
goal is to be a tool for experimenting with town-scale social
simulations for research, entertainment, or creative projects.
We accomplish this by taking a data-driven approach to
simulation that affords easier content authoring. Neighborly’s
most significant selling point is the plugin architecture that
encourages users to package their authored content (character
types, behaviors, places, and custom AI logic) in a modular
and shareable fashion. We take special care to provide a clean
API (application programming interface), thorough documen-
tation, and examples.

A. Design Goals

While developing Neighborly, we focused on supporting
the core characteristics of TotT-likes, while generalizing some
of TotT’s more Bad News-specific elements (i.e., hard-coded
social norms) and improving authorability. Here are our goals
for the new architecture:

1) Support the core characteristics of TotT-likes
2) Provide straightforward methods for extension and cus-

tomization
3) Minimize built-in assumptions about character behavior

ans social norms

4) Support a heterogeneous population of characters (char-
acters can have different functionality)

5) Provide a built-in query language for story sifting/story
recognition. We talk about this in the Future Work
section

6) Structure the project so that its ready to use as a
downloadable Python package in third-party projects

We took special care to ensure that Neighborly’s project
structure, API, and documentation were conducive to integrat-
ing into future projects. That is a core part of addressing the
lack of code reuse and reproducibility of results. To the best
of their ability, software-based research artifacts should adhere
to software engineering best practices. These practices exist
to create software that is easy to maintain, extend, and use.
If we are making software tools for other people to use, we
must make it easy to get started using our tools. We offer
code samples that demonstrate how to integrate Neighborly
into different projects and how to use various features.

B. The Engine

Neighborly uses a custom component-based architecture
to represent entities in the story world. Our architecture is
a combination of Unity’s GameObject Scripting API 2 and
a traditional entity-component system (ECS) 3. We refer to
entities in Neighborly as GameObjects. Neighborly’s ECS
manages all the game objects in the world, a priority queue
of Systems (update functions) to run each timestep, and a
collection of global resources that all game objects can access
(date/time, weather, and relationship networks). We chose to
use an ECS because it stresses modularity and would allow
users to compose new types of characters and locations.

Each Neighborly simulation instance has an engine that is
responsible for constructing new entities at runtime. It uses
archetype definitions to determine what components should
be attached to a particular entity at creation. Archetypes are
baseline configurations for different types of entities that can
spawn. Users specify entity archetypes in data files that get
loaded into the engine by plugins before the simulation starts
(See Listing 2).

Neighborly’s engine relies heavily on the factory software
design pattern. It maintains an internal record of component
factory class instances responsible for making specific com-
ponent types. This workflow was inspired by Kevin Dill’s
approach to data pipelines for game AI architectures [31].
Neighborly focuses on two core types of entity archetypes:
characters and locations, each with a different set of com-
ponents (see Fig. 1). New entity archetypes are specified in
YAML. Assuming one uses existing components, no Python
coding is required to define new characters and locations.

C. Modeling Characters

Our goal is to provide a platform that supports a hetero-
geneous population of autonomous characters. This means

2https://docs.unity3d.com/ScriptReference/GameObject.html
3Entity-component system is a common software architecture pattern for

games that stresses modularity by separating data from processes.

428

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Entity archetypes are collections of components that are associated
with GameObject instance. Generally, entities are either characters or loca-
tions. Global resources are singleton components available to all entities in
the ECS.

that characters with varying collections of components should
still interact within the same space. All characters need
a “GameCharacter” component that holds their name, age,
current location, life values, and active statuses. However,
additional components that control behavior are optional, such
as personalities and routines.

We encourage users to extend the base character entity
archetypes with additional components. For example, if their
town is supposed to be a mix of goblins, trolls, and humans,
they should create new components to support the specific
behaviors of these factions. If goblins eat humans, one may
want a Predator component that keeps track of what kind
of entities are eaten (in this case, humans), how many have
been eaten, the ID of the most recently eaten entity, and
so forth. Then, assuming an action is available for eating,
all goblins could participate in eating characters tagged as
humans. Further, the Predator component could be reused for
other types of characters that eat entities. At the moment,
creating new components for the simulation has to be done
entirely in Python. Listings 1 and 2 give an an example of
creating a custom component, adding it to a plugin, and then
using the component in an entity specification.

1) Character Values: Characters can optionally have con-
cepts they value in life (i.e., confidence, material things,
knowledge, power). We call these character values, and they
can influence how characters’ relationships evolve and the
types of places they enjoy visiting. Character values are a new
addition and provide an alternative to TotT’s Big 5 personality
model.

Fig. 2. An overview of Neighborly’s architecture. The first step is loading
entity definitions, component definitions, and other simulation data from
plugins. Then the simulation procedurally generates an empty plot of land
for the town. Once there is a town, the simulation will simulate each time
step until it reaches the specified date to end generation. During each time
step, time advances, characters move based on routines, character attributes
are updated, character behaviors run, and new characters and businesses are
added to the town.

2) Routines: By default, characters in Neighborly follow
7-day weekly routines instead of the single-day stochastic
routines defined in TotT. We made this decision because we
wanted to explicitly model weekends. Each day is divided into
24 hours, and scheduled activities may last for multiple hours
during the day. At the beginning of the time step, all characters
move to their scheduled location. If there is not an activity
scheduled, then the characters are free to choose where they
want to go based on what locations are available.

3) Roles: Currently, Neighborly does not have a general
model for representing character’s roles within their commu-
nity. For now we maintain TotT’s occupation model. Occupa-
tions are the roles that characters gain based on where they
work. As such, occupations affect a character’s routine, the
evolution of their relationships, eligibility for future occupa-
tions, and other aspects of their social lives.

4) Behaviors: In Neighborly, characters’ behaviors are de-
fined by event callback functions that dictate which life events

429

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

character’s engage in and what happens when they do. We
talk more about Neighborly’s event system in a later section.
Giving characters the ability to select which events they accept
ensures that characters only engage in events they know how to
handle, and allows characters with different decision-making
logic to participate in the same interactions.

To help users compose reactive behaviors, Neighborly offers
a behavior tree API for creating event-callbacks. Behavior
trees are a behavior definition data structure made famous
by Halo 2 [32] and widely used in commercial games. They
compose behaviors using a series of control-flow and action
nodes. As with extending characters with new components,
users can define new behavior tree nodes to extend the
existing ones and compose behaviors using their new nodes
and existing nodes. The logic inside of nodes needs to be
authored in Python for now. However, if nodes do not depend
on one another, designers can reuse them in multiple trees.

D. Modeling Locations

Location game objects give characters places to go in the
town. They track what characters are present and maintain a
maximum capacity to prevent too many characters from being
in one place at a time. Locations can also define a set of
metadata such as available activities (gambling, socializing,
and reading) or services (errands, leisure, work). Locations
can also house businesses or residences. We borrowed these
representations directly from TotT.

Activities are a new addition and take the role that “occa-
sions” (i.e., errands, leisure, home, work) had in the original
TotT. Activities are associated with different character values
(explained earlier) and so characters will tend to frequent loca-
tions with activities that match their values. When characters
need to find a location to go during their free time, they will
search the ECS for locations that have activities that match
their character values.

Businesses help shape the social landscape of the town.
They offer social spaces where characters can develop rela-
tionships. They also add thematic flavor to the world. The
original implementation of TotT only featured businesses that
were historically relevant to the mid-1800s to late-1900s, and
it had date checks to ensure historically accurate businesses
appeared during specific eras. With the new plugin interface,
designers can easily create new business types that completely
change the setting and theme of their simulated town.

E. Modeling Relationships

Relationship data is a global resource in Neighborly’s ECS.
We support two types of social connection networks: recip-
rocal and directed. Directed relationships allow characters to
be friends with someone who considers them enemies. The
abstractions for relationship networks are templated containers
that can hold any data type. Out of the box, Neighborly defines
a single directed relationship network where connections be-
tween characters are measured using friendship and romance,
adapted from charge and spark from the original TotT. Authors
can modify or add new relationship networks as desired.

Friendship and romance are modeled as two scalar affinity
values ranging from -50 to 50. Friendship is a character’s
platonic affinity for another character. A Friendship score of
50 means they could be best friends, and a score of -50
means they could be worst enemies. Romance is a character’s
romantic affinity for another character. A score of 50 means
that a character loves another, while a score of -50 means they
are repulsed.

Relationships may also have added modifiers, such as
Friend, Enemy, Coworker, and Love Interest. Modifiers add
searchable tags and optional buffs to the friendship/romance
values. Users can define new modifiers and load these into
Neighborly. Relationship modifiers can be attached manually
or added by event handlers. For example, when the Become-
Friends event fires, the Friend modifier is automatically added
to each characters’ relationship model.

F. The Event System

While the simulation is running, various events may fire and
characters have the ability to determine if they want to engage
in that event and what happens when they do. We implemented
an event-based callback system to handle character behaviors.
Since Neighborly supports a heterogeneous population of cus-
tom agents, we can’t make assumptions about the characters’
internal structure and their decision-making logic. To keep the
simulation flexible and allow different characters to engage
in the same events, character components can register as
event listeners and accept, reject, and run bespoke code when
particular events fire. Users can even create new event types
and rules. Characters will continue to function properly even
when confronted with unfamiliar events.

Life events are triggered automatically by event rules. Event
rules are production rules with preconditions and post-effects.
Neighborly’s event rules run on set intervals and search the
simulation state for characters that match a set of condi-
tions. When they find matches, the event system asks each
character involved if they wish to engage in the event. If
all characters agree, then each character calls specific event
callback functions based on their internal configuration. These
callback functions should update the character’s internal state
and relationship stats with associated characters. Neighborly’s
behavior trees are represented as event callbacks and may be
used to compose sequential and conditional behavior rather
than calling single functions.

G. Extending Neighborly with Plugins

Plugins are the core way users extend Neighborly’s func-
tionality without editing the core code. Within plugins, users
can define new businesses, residences, occupations, characters,
behaviors, and ad-hoc components. Their purpose is to give
users the ability to customize the simulations narrative setting
and the behavior of the characters that inhabit it. Plugins
address the content modularity limitations in TotT.

Neighborly plugins are Python modules/packages that are
imported prior to starting the simulation. Users can define data
using a combination of Python code and YAML data files (See

430

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

Listing. 2). Plugins may add new content to Neighborly or
override existing definitions.

Since plugins are self-contained Python modules they can
be shared as packages on GitHub and the Python Package
Index (PyPI) 4. PyPI is used by Python’s package manager
and is the official source of Python packages. Having such
publicly accessible venues for sharing content should help
foster a community around Neighborly’s plugin ecosystem. We
were inspired by the game mod communities around Cities:
Skylines [33] and RimWorld [34].
c l a s s C u s t o m P e r s o n a l i t y M o d e l (Component) :

P e r s o n a l i t y model a t t r i b u t e s
. . .

c l a s s C u s t o m P e r s o n a l i t y M o d e l F a c t o r y (
A b s t r a c t F a c t o r y) :
C re a t e P e r s o n a l i t y M o d e l i n s t a n c e
. . .

def i n i t i a l i z e p l u g i n (e n g i n e) :
e n g i n e . a d d c o m p o n e n t f a c t o r y (

C u s t o m P e r s o n a l i t y M o d e l F a c t o r y ())
. . .

Listing 1. Creating custom components requires defining a component class
and a factory for that class. The factory is added to the simulation’s engine
instance when the plugin is initialized.

C h a r a c t e r s :
− name : B a s e C h a r a c t e r

d e f a u l t : yes
components :

− t y p e : GameCharac ter
o p t i o n s :

name : ’# f i r s t # # l a s t # ’
− t y p e : R o u t i n e

− name : C u s t o m P e r s o n a l i t y C h a r a c t e r
i n h e r i t s : B a s e C h a r a c t e r
components :

− t y p e : C u s t o m P e r s o n a l i t y M o d e l
o p t i o n s :

key − v a l u e p a i r o p t i o n s

Listing 2. YAML definitions for two character archetypes: BaseCharacter and
CustomPersonalityCharacter. All entity archetypes use the same structure of
defining an archetype name, optional attributes (default/inherits), and a list of
components and their options. Here we define the CustomPersonalityCharacter
archetype with inherits properties from BaseCharacter and adds an additional
CustomPersonalityModel component.

V. CONCLUSION

We identify the design space of TotT-like social simulation
for generating emergent narratives. These systems operate at
community-scale, simulating the evolution of communities of
characters (tens to hundreds) over decades of time. These
simulations are non-interactive and aim to generate content
for other media and projects. Due to the population of char-
acters and a desire to keep generation times low, TotT-likes

4https://pypi.org/

use simulation level-of-detail techniques, focusing on abstract
social interactions and significant life events over fine-grained
character actions.

Neighborly is a rational reconstruction of Talk of the Town,
designed to be a reusable, extensible sandbox environment for
creating TotT-like social simulations. Like in TotT, Neighborly
models characters moving between various locations, holding
jobs, opening businesses, and raising families. Neighborly’s
plugin architecture allows users to inject custom code and
define characters, behaviors, events, and locations. This em-
powers users to expand Neighborly’s built-in functionality
and share their plugins using established Python workflows.
Our goal is to create a welcoming environment for non-
technical users while still offering experienced programmers
extensibility for more advanced add-ons.

A. Future Work

Neighborly is still a work-in-progress and is missing some
features. One of the most important is built-in support for
story sifting/recognition [35], [36]. Story sifting is the process
of extracting intriguing emergent narratives from storyworlds.
Simply running a social simulation and reporting everything
that happens often results in “boring” narratives: too many
facts just told one after another. The original Talk of the
Town was designed to be used with a human-in-the-loop
operator in the Bad News live experience. The operator was
then tasked with manually inspecting the simulation data and
piecing together potential narratives. We plan to integrate our
story sifting visual scripting tool, Centrifuge [17]. Users could
toggle sifting patterns and add new ones. Then with these
patterns, users could inspect the story world for narrative
fragments. For example, users could look for event sequences
where a family rises to prominence in the town, only to have an
heir that departs, leaving the legacy in ruin. Story sifting could
also be a method for designers to perform expressive range
analysis [37] on their towns by specifying a set of patterns
and visualizing the distribution of story appearances.

Next, we plan to evaluate Neighborly by comparing its
generated stories to TotT’s. We want to see if the same general
set of character scenarios materialize, such as generational
legacies, infidelity, asymmetric friendship, love triangles, and
rivalries. Character scenarios may not materialize in quite the
same distribution, but it is important to measure just how
much. We are still determining a proper metric for evaluating
the accuracy of Neighborly as a reconstruction of TotT.

Finally, we plan to perform user studies to evaluate Neigh-
borly’s usability and expressiveness. First, we will put Neigh-
borly in the hands of professional game designers and ask
them to reinterpret story settings from books, shows, or other
games into Neighborly’s data format. We are inspired by
[38], and how they tested their WizActor tool by having a
professional game designer create a regency-era world using
Kismet. Second, we will evaluate the usability for Neighborly
users less versed in simulation authoring.

431

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Ryan, Curating simulated storyworlds. University of California,
Santa Cruz, 2018.

[2] R. Aylett, “Narrative in virtual environments-towards emergent narra-
tive,” in Proceedings of the AAAI fall symposium on narrative intelli-
gence. AAAI Press Menlo Park, 1999, pp. 83–86.

[3] Monolith Productions, “Middle Earth: Shadow of Mordor,” [PlayStation
4, Xbox One, PlayStation 3, Xbox 360, Microsoft Windows, macOS,
Linux, Classic Mac OS], 2014.

[4] ——, “Middle Earth: Shadow of War,” [PlayStation 4, Xbox One,
PlayStation 3, Xbox 360, Microsoft Windows, macOS, Linux, Classic
Mac OS], 2017.

[5] Maxis, “The Sims 4,” [PlayStation 4, Xbox One, macOS, Microsoft
Windows, Macintosh operating systems, Classic Mac OS], 2014.

[6] J. McCoy, M. Treanor, B. Samuel, A. A. Reed, N. Wardrip-Fruin,
and M. Mateas, “Prom Week,” in Proceedings of the International
Conference on the Foundations of Digital Games, 2012, pp. 235–237.

[7] K. Stuart, “Keith Stuart on AI, acting and the
weird future of open-world games,” Eurogamer,
2015. [Online]. Available: https://www.eurogamer.net/articles/
2015-11-21-keith-stuart-on-ai-acting-and-the-weird-future-of-open-world-games

[8] ——, “Video games where people matter? the strange
future of emotional ai,” The Guardian, 2016. [On-
line]. Available: https://www.theguardian.com/technology/2016/oct/12/
video-game-characters-emotional-ai-developers

[9] A. Wawro, “How devs are working to design game
AI that plays like a human,” GameDeveloper, 2015.
[Online]. Available: https://www.gamedeveloper.com/programming/
how-devs-are-working-to-design-game-ai-that-plays-like-a-human

[10] D. Heaven, “Cleverness isn’t always everything for
a gaming artificial intelligence,” NewScientist, 2016.
[Online]. Available: https://www.newscientist.com/article/
2078134-cleverness-isnt-everything-for-a-gaming-artificial-intelligence/

[11] J. Ryan and M. Mateas, “Simulating character knowledge phenomena
in Talk of the Town,” in Game AI Pro 3. AK Peters/CRC Press, 2017,
pp. 433–448.

[12] B. Samuel, J. Ryan, A. J. Summerville, M. Mateas, and N. Wardrip-
Fruin, “Bad news: An experiment in computationally assisted perfor-
mance,” in International Conference on Interactive Digital Storytelling.
Springer, 2016, pp. 108–120.

[13] S. F. Festival. Slamdance dig spotlight - bad news. Youtube. [Online].
Available: https://youtu.be/jrrpLFS9Zcw

[14] S. Wright, “How the mixed reality game ”bad news”
brings towns like ”twin peaks” to life,” Rolling
Stone, 2017. [Online]. Available: https://web.archive.org/
web/20171124073022/http://www.rollingstone.com:80/glixel/news/
mixed-reality-game-bad-news-brings-small-town-usa-to-life-w479065

[15] R. AlJammaz, Y. She, and M. Mateas, “Argument box,” AIIDE Experi-
mental AI in Games Workshop, 2020.

[16] C. Miller, M. Dighe, C. Martens, and A. Jhala, “Crafting interactive
narrative games with adversarial planning agents from simulations,” in
International Conference on Interactive Digital Storytelling. Springer,
2020, pp. 44–57.

[17] S. Johnson-Bey and M. Mateas, “Centrifuge: A visual tool for authoring
sifting patterns for character-based simulationist story worlds,” The
17th AAAI conference on Artificial Intelligence and Interactive Digital
Entertainment: Programming Languages and Interactive Entertainment
Workshop, 2021 ’in press’.

[18] T. Adams and Z. Adams, “Dwarf fortress,” [Linux, macOS, Microsoft
Windows, Macintosh operating systems, Classic Mac OS], 2009.

[19] A. Bundy, “What is the well-dressed ai educator wearing now?” AI
Magazine, vol. 3, no. 1, pp. 13–13, 1982.

[20] B. Tearse, P. Mawhorter, M. Mateas, and N. Wardrip-Fruin, “Skald: min-
strel reconstructed,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 6, no. 2, pp. 156–165, 2013.

[21] B. Tearse, M. Mateas, and N. Wardrip-Fruin, “Minstrel remixed: a
rational reconstruction,” in Proceedings of the Intelligent Narrative
Technologies III Workshop, 2010, pp. 1–7.

[22] B. Samuel, A. A. Reed, P. Maddaloni, M. Mateas, and N. Wardrip-Fruin,
“The ensemble engine: Next-generation social physics,” in Proceedings
of the Tenth International Conference on the Foundations of Digital
Games (FDG 2015), 2015, pp. 22–25.

[23] S. R. Turner, “Minstrel: a computer model of creativity and storytelling,”
Ph.D. dissertation, University of California, Los Angeles, 1993.

[24] J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and
N. Wardrip-Fruin, “Authoring game-based interactive narrative using
social games and comme il faut,” in Proceedings of the 4th International
Conference & Festival of the Electronic Literature Organization: Archive
& Innovate, vol. 50. Citeseer, 2010.

[25] R. Evans and E. Short, “Versu—a simulationist storytelling system,”
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 6, no. 2, pp. 113–130, 2013.

[26] Emily Short, “Blood and laurels,” [iPad OS], 2014.
[27] D. V. Pynadath and S. C. Marsella, “Psychsim: Modeling theory of mind

with decision-theoretic agents,” in IJCAI, vol. 5, 2005, pp. 1181–1186.
[28] A. Summerville and B. Samuel, “Kismet: a small social simulation

language,” in Casual Creator Workshop at the 2020 International
Conference on Computational Creativity, 2020.

[29] Paradox Interactive, “Crusader kings ii,” [macOS, Microsoft Windows,
Linux, Classic Mac OS], 2012.

[30] M. Brown, “Emergent storytelling in the sims,”
2018. [Online]. Available: https://www.gdcvault.com/play/1025112/
Emergent-Storytelling-Techniques-in-The

[31] K. Dill, “Six factory system tricks for extensibility and library reuse,”
in Game AI Pro 3: Collected Wisdom of Game AI Professionals. CRC
Press, 2017, pp. 49–62.

[32] Bungie, “Halo 2,” [iPad OS], 2004.
[33] Paradox Interactive, “Cities: Skylines,” [PlayStation 4, Xbox One, ma-

cOS, Nintendo Switch, Microsoft Windows, Linux, Macintosh operating
systems], 2015.

[34] Ludeon Studios, “Rimworld,” [macOS, Linux, Microsoft Windows,
Macintosh operating systems], 2013.

[35] J. O. Ryan, M. Mateas, and N. Wardrip-Fruin, “Open design challenges
for interactive emergent narrative,” in International Conference on
Interactive Digital Storytelling. Springer, 2015, pp. 14–26.

[36] M. Kreminski, M. Dickinson, and N. Wardrip-Fruin, “Felt: a simple
story sifter,” in International Conference on Interactive Digital Story-
telling. Springer, 2019, pp. 267–281.

[37] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, 2010, pp. 1–7.

[38] B. Samuel, A. Summerville, J. Ryan, and L. England, “A quantified
analysis of Bad News for story sifting interfaces,” in International
Conference on Interactive Digital Storytelling. Springer, 2021, pp.
142–156.

432

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 03,2022 at 17:41:48 UTC from IEEE Xplore. Restrictions apply.

